PX155

MultiSystem Dimmer

$$
4 \times 600 \mathrm{~W}
$$

User manual

Table of Contents

1 Description 4
2 Safety conditions 5
3 Connectors and control elements 7
4 Designation of displayed messages 7
5 Dimmer programming 9
6 Programmable parameters 9
6.1 Digital input settings 10
6.1.1 Group parameters 11
6.1.2 Individual parameters 12
6.1.3 Temperature 13
6.1.4 Input control mode. 13
6.1.5 Scenes and chaser programming 13
6.2 Analog input settings 14
6.2.1 Group parameters 14
6.2.2 Individual parameters 15
6.2.3 Temperature 16
6.2.4 Input mode. 16
6.3 Function diagrams for external button control 17
6.3.1 Function one 17
6.3.2 Function two 17
6.3.3 Function three. 18
6.3.4 Function four. 18
6.3.5 Function five 19
7 Dimmer access lock 20
7.1 Switching the access lock on 21
7.2 Switching the access lock off 21
8 Menu scheme for digital input 23
9 Menu scheme for analog input 24
10 Assembly of the device. 25
11 Connection scheme 26
11.1 DMX-512 signal control. 27
11.2 Control of linear potentiometers. 28
11.30 - 10V control 29
11.4 Monostable buttons control 30
12 Dimensions 31
13 Notes 31
14 Technical data 32

Manufacturer reserves the right to make modifications in order to improve device operation.

PXM Marek Żupnik sp.k.		
Podłęże 654	tel. +48123858306	Rev.1-6
32-003 Podłęże	mail: info@pxm.pl	13.05 .2019

1 Description

Professional digital dimmer designed for fixed installations.
The device depending on the model allow to control four or two independent circuits of 600W or 1200 W loads each. It has built-in interference suppression system, signal lights, fuses, DMX-512 control and 0 - 10V input. There are also external control keys available that work in accordance with one of four built-in functions.

Programmable parameters for all channels:

- DMX start address of the first channel
- control characteristics (linear, linear inverse, logarithmic, exponential, switched ON / OFF, three neon control characteristics)
- ACL - limiting the output voltage in the range of $50-230 \mathrm{~V}$ with an accuracy of up to 1 V
- Preheat - bulb preheating (0-10\%)
- dimmer reaction to DMX signal loss (off, on 100%, slow shutdown, last DMX value, one of three scenes or one of two chasers)
Individually programmable parameters for each channel:
- DMX address (from 1 to 512) - each channel can be ascribed to a different DMX address or both channels can even have the same address
- one of eight control characteristics
- limiting the output voltage in the range of $50-230 \mathrm{~V}$ with an accuracy of up to 1 V

The control is possible by means of: DMX-512 digital signal, analog signals $0-10 \mathrm{~V}$ or using external keys.

2 Safety conditions

PX155 dimmer is powered directly from standard 230 V grid, what can cause electric shock when safety rules are not observed. Therefore it is necessary to observe the following:

1. Installation, particularly power connection, should be performed by a person holding the appropriate qualifications, according to the description in the instruction manual.
2. Dimmer can be connected to socket which has protection installation - separate PE strand - in working order only (3-strand grid).
3. All the conductors should be protected against mechanical and thermal damage.
4. In the event of damaging any conductor, it should be replaced with a conductor of the same technical data and attestation.
5. The external devices can be connected to the dimmer with 3 -strand 1.5 mm minimum cross-section area only.
6. Dimmer can be installed in close electrical switching stations only, with restricted access for people who does not handle proper qualifications in 230 V supplied devices maintenance.
7. Power input must be protected with an external residual current breaker with overload of 10A rated current and C-type characteristics.
8. After the installation is completed, check the neutralization efficacy of all powered devices.
9. All repairs demanding casing opening should be made with cut off power supply.
10. The device should be strictly protected against water and other liquids.
11. All sudden shocks, particularly dropping, should be avoided.
12. Device with damaged (bent) casing should be not connected to the mains.
13. The device cannot be turned on in places with humidity exceeding 90\%.
14. The device cannot be used in places with temperature lower than $+2^{\circ} \mathrm{C}$ or higher than $+40^{\circ} \mathrm{C}$.

NOTE!

1. Improper connection of the protective wire can cause electric shock.
2. Improper connection of the neutral conductor will cause the dimmer to malfunction.
3. The dimmer can control resistive and inductive circuits (loads) only.

The dimmer cannot be used to control the electronic transformers, electronic ballasts for fluorescent lamps and other devices that have electronic circuits, unless the producer distinctly states so.

3 Connectors and control elements

4 Designation of displayed messages

日日是 No DMX signal：slow dimming of all outputs
000 Minimal brightness of a particular channel show in percentage（\％）
800 Maximal brightness of a particular channel show in percentage（\％）
BEO Limit－output voltage limitation in a range from 50 to 230 V
日日 DMX address selected in a range from 1－509
日ED Group parameters
OBG C01－C04，number of the edited channel
EDE Built－in factory chaser（in addition－reaction to DMX signal loss）

EDB Programmable chaser（in addition－reaction to DMX signal loss）
ODA Characteristics， 6 different characteristics to choose from
GEA Scenes and chasers programming
E日B Exponential characteristics
FBA F01－F04，numbers of the edited scenes
E日B XFade switching on／off（for scene smooth changing）
日回 Analog input 0－10V
E日B Control function for external button
OR5 Brightness rising time for button control
日昭 Dimmer internal temperature
EED Number of chaser steps－available values from 1 to 8
HED No DMX signal－recently controlled values maintaining
日日G Individual programming parameters
O日G Linear characteristic
E日B Logarithmic characteristic
E日B Inverted characteristic
日EG nE1－nE3，for neon lamps control characteristics
日GS No signal－device reaction to DMX signal absence or interruption （9 possibilities to choose from）
日日品 No signal－all outputs controlled at 100%
OFE No signal－all outputs turned off
PEE Preheat－bulb＇s filaments preheating，set in a range from 0 to 10%
5EB Sc1－Sc4，programmable scenes（set also in case of DMX signal absence or interruption）
5Pa Chaser speed in a range from 001 to 032
5月厚 Switchable characteristic
日GO Switching the input mode（digital／analog）

日BA External button control

E日B Control function executed with external button no． 1
O日S Maximum brightness duration time for button control
ER日 Temperature sensor fail－contact service for repair
日月：Analog mode－selecting this option in the main menu activates analog control mode（also in the noS mode）

5 Dimmer programming

After turning the device on，software version is shortly displayed．During the device normal operation the display shows DMX address or displays AdC lettering，meaning analog control mode．Pressing Esc during normal operation will test the display－all the segments should get On state．Press Enter to switch to the main menu，the display will show ALL．Press Prev or Next to select programming menu（ $A L L, I n d, A d C, d E F)$ ，and then press Enter to confirm your selection．

6 Programmable parameters

The parameters you can program for the dimmer include：
1．Group parameters－ALL－settings are the same for all the channels． For DMX address setting it means that address displayed is the address of the first channel．Programming DMX address in this menu deletes the previously programmed individual addressing．

2．Individual parameters－Ind－each channel may be set with individual parameters，including individual DMX addressing．The same address
may be set to more.
Group parameters have a higher priority than individual parameters.
This means that programming in the ALL mode, for example, the DMX address, cancels the previous settings for all channels.
3. Dimmer temperature $-{ }^{\circ} \mathrm{C}$ - the function to check out the internal dimmer temperature.
4. Analog / digital mode of operation switching - AdC - the function to switch between digital control mode (DMX) or analog control (0 - 10V signal or monostable external button).
5. Scenes and chasers programming - dEF - active only with the digital control mode (so the parameter $A d C$ set to OFF).

The function allows:

- 3 scenes programming
- 4 user-defined chaser steps with speed and fading options programming
- speed and fading of built-in chaser

6.1 Digital input settings

Digital input (so controlling the dimmer with DMX-512 signal) is active when parameter $A d C$ is set to $0 F F$.

6.1.1 Group parameters

1. Adr - DMX address from the range 1 to 509 (setting 509 as the address for the first channel means automatically address 512 for the fourth dimmer channel).
2. Cur - characteristic, there are 9 options to choose from:

- Lin-linear
- SP - switchable
- Inu - inverted
- LnU-logarithmic
- E_P - exponential
- nE1 ... nE3 - for neon lamps control *
- Li2 - linear 15-100\% (zero value at the power output for DMX values of $0-15 \%$)

3. $A C L$ - limits the output voltage in the range from $50-230 \mathrm{~V}$
4. PrE - heating up the bulb filaments, set in the range from $0-10 \%$
5. FSo - dimmer wake up after power supply connection
6. noS - precise the dimmer reaction to DMX signal interruption. There are 11 options to choose from:

- On - turning all outputs on at 100%
- OFF - turning all outputs off
- $H L d$ - the last received value is held
- 880 - slow output switching off (about 20 seconds)
- Sc1 ... Sc4 - programmable scenes
- CrF - built-in chaser
- CrP - user-defined chaser
- AnL - analog mode activation in the absence of DMX (e.g. it allows to control using the connected external momentary buttons)

6.1.2 Individual parameters

1. Adr - DMX address from the range 1 to 512
2. Cur - characteristic, there are 9 options to choose from:

- Lin-linear
- SP - switchable
- Inu - inverted
- LnU - logarithmic
- E_P - exponential
- nE1 ... nE3 - for neon lamps control *
- Li2 - linear 15-100\% (zero value at the power output for DMX values of $0-15 \%$)

3. $A C L$ - limits the output voltage in the range from $50-230 \mathrm{~V}$

6.1.3 Temperature

${ }^{\circ} \mathrm{C}$ - this parameter allows to check the dimmer internal temperature in the range -40 to $+125^{\circ} \mathrm{C}$.

NOTE! Message Er1 means sensor failure, so service is necessary.

6.1.4 Input control mode

AdC - switching between default digital control mode (DMX-512, setting OFF) and analog mode ($0-10 \mathrm{~V}$ control signal or external button - setting On).

6.1.5 Scenes and chaser programming

1. Sc1 ... Sc4-scenes programming:

- C01 ... C04-edited channel number
- 0 ... 100 - channel brightness in percentage \%

2. CrP - user-defined chaser:

- F01 ... F08 - editable pattern numbers
- C01 ... C04-edited channel number
- 0 ... 100 - channel brightness in percentage \%
- LEn - chaser step number (1 to 8)
- SPd - chaser speed from 1 (255 seconds) to 32 (0.1 second)
- FAd - scenes fading function switching on or off

3. CrF - built-in chaser:

- SPd - chaser speed from 1 (255 seconds) to 32 (0.1 second)
- FAd - scenes fading function switching on or off

6.2 Analog input settings

Analog input from smooth $0-10 \mathrm{~V}$ control or monostable button control is active with the parameter AdC set to On .

6.2.1 Group parameters

1. Aln - detailed settings for analog control input:

- AnL - voltage control 0-10V (for OV total dimming, for 10V maximum brightness) using a $10 \mathrm{k} \Omega$ linear potentiometers or an external control voltage
- bln - settings for external monostable button control:
- Fun - 5 functions to choose from (see charts in item 6.3)
- rIS - brightness rising time to maximum allowed by output ACL voltage - from 0 (immediately) to 255 seconds
- LAS - duration time from 0 to 9990 seconds

2. Cur - characteristic, there are 9 options to choose from:

- Lin - linear
- SP - switchable
- Inu - inverted
- LnU - logarithmic
- E_P - exponential
- nE1 ... nE3 - for neon lamps control *
- Li2 - linear 15-100\% (zero value at the power output for DMX values of $0-15 \%$)

3. $A C L$ - limits the output voltage in the range from $50-230 \mathrm{~V}$
4. PrE - heating up the bulbs filaments, set in range from $0-10 \%$
5. FSo - dimmer wake up after power supply connection

6.2.2 Individual parameters

1. $A / n-$ analog control input settings for each channel:

- AnL - voltage control $0-10 \mathrm{~V}$ (for 0 V total dimming, for 10 V maximum brightness) using a 10k』 linear potentiometer or an external control voltage
- bln - settings for monostable external button:
- Fun - 5 functions to choose from (see charts in item 6.3)
- rIS - brightness rising time to maximum allowed by output ACL voltage - from 0 (immediately) to 255 seconds
- LAS - duration time from 0 to 9990 seconds

2. Cur - characteristic, there are 9 options to choose from:

- Lin-linear
- SP - switchable
- Inu - inverted
- LnU - logarithmic
- E_P - exponential
- nE1 ... nE3 - for neon lamps control *
- Li2 - linear 15-100\% (zero value at the power output for DMX values 0 - 15\%)

3. $A C L$ - limits the output voltage in the range from $50-230 \mathrm{~V}$

6.2.3 Temperature

${ }^{\circ} \mathrm{C}$ - this parameter allows to check the dimmer internal temperature in the range -40 to $+125^{\circ} \mathrm{C}$.

NOTE! Message Er1 means sensor failure, so service is necessary.

Dimmer has been equipped with thermal protection with the following settings for the temperatures inside the dimmer:

- $60^{\circ} \mathrm{C}$ - automatic start of the electronically controlled fan
- $90^{\circ} \mathrm{C}-10 \%$ drop in power output and 10% more with each subsequent $1^{\circ} \mathrm{C}$
- $100^{\circ} \mathrm{C}$ - automatic switch-off of the dimmer

After cooling and lowering the temperature to $70^{\circ} \mathrm{C}$, the device starts working again at full power.

6.2.4 Input mode

AdC - switching between default digital control mode (DMX-512, setting OFF) and analog mode ($0-10 \mathrm{~V}$ control signal or external button - setting On).

6.3 Function diagrams for external button control

 6.3.1 Function one

6.3.2 Function two

6.3.3 Function three

6.3.4 Function four

Each subsequent short press of a key, when the function performs the LAS parameter, causes the parameter time to be counted from 0 (reset the elapsed time). The value of this parameter is taken into account only in the fourth function. The other three are ignored.

6.3.5 Function five

Pressing and holding the external button "A" causes rise of the brightness. Once it is released the brightness stops to increase. Pressing and holding the external button " B " leads to the brightness fall down. After releasing the button " B " brightness will remain at the same level as at the time of its release.

NOTE! To use this function additional resistor should be installed before external button " B " (as in the schematic diagram below).

REFLECTORS

7 Dimmer access lock

According to expanded possibilities of dimmer parameters settings there is option to code programming effects (programmer-defined number from range 1 to 255). Such situation other users can only read defined parameters without possibility of modification. With the parameters coded also function $d E F$ is not displayed.

7.1 Switching the access lock on

1. Press Esc enough times to leave dimmer programming mode - the display will show finally DMX address. Then press and hold Esc and press Next - the display will answer with PAS lettering. Release Esc key.
2. Press Enter. The display will show Enb. (If $d S b$ appears dimmer is already code protected - see point 7.2).
3. Once again press Enter and choose the password with Next or Prev keys. Confirm decision with Enter.
4. The dimmer is code protected. It will automatically terminate locking procedure and return to programmed operation.

7.2 Switching the access lock off

1. Press Esc enough times to leave dimmer programming mode - the display will show finally DMX address. Then press and hold Esc and press Next - the display will answer with PAS lettering. Release Esc key.
2. Press Enter. Then display will show $d S b$. (If Enb appears dimmer is not code protected - see point 7.1).
3. Once again press Enter and the display will show 127. Set user-defined password with Prev or Next keys. Confirm correct number with Enter.
4. The dimmer password is removed and all programmable parameters are unlocked. Dimmer will automatically return to standard operation.

NOTE! Confirming the wrong password will display bAd. Nit is necessary to start unlocking procedure from beginning. The third time wrong password setting lock the dimmer permanently, displaying Loc. The telephone contact to service is necessary to reset the password.

8 Menu scheme for digital input

9 Menu scheme for analog input

The way of displaying the LAS parameter value is changed after exceeding 255 (255 seconds). The next available value is 260 (seconds) (visible as 0.2.6.). From this value, the display value be multiplied by 10 and the setting accuracy is reduced to tens of seconds.

10 Assembly of the device

View of the back of the device

On the back of the device there is a handle with a movable catch, which enables quick and convenient placement of the device on the T35 mounting rail.

To install the device, it should be applied to the rail as shown in the figure on the left, then hook the movable hook to the upper edge of the rail. The next step is to push the device down so that the lower part of the holder on the bottom edge of the rail can be inserted.

11 Connection scheme

MultiSystem Dimmer must be connected to the DMX line in series. That means, the control cable must be driven to the DMX coupling of the dimmer, and then driven out from the same coupling (refer to the scheme below) to the next DMX-512 signal receivers.

If MultiSystem Dimmer is installed as the last device in a DMX line, a terminator (120 Ohm resistor) must be connected to "DMX+" and "DMX-" terminals.

In addition, when, instead of potentiometers, the monostable button is to be applied, it must be connected to " +10 V 0 OU " and " $0-10 \mathrm{~V}$ IN" inputs.

11.1 DMX-512 signal control

11.2 Control of linear potentiometers

10k Ω POTENTIOMETERS

11.4 Monostable buttons control

12 Dimensions

Description of connections

| $\mathbb{Q}-$ | L in |
| :--- | :--- | :--- |
| \sim | N in |

\author{

$=\mathbb{O}$	GND
	+10VDC out

}

13 Notes

* neon lamps control characteristic - each characteristic (nE1, nE2, nE3) is dedicated to inductive load control as for neon lamp transformers. Differences between characteristics are only in lamp switching level, so the start brightness of the lamp. The suitable characteristic should be decided depending on user light installation.

14 Technical data

type	PX155
power supply	230V AC
max. current consumption	10 A
control inputs	digital DMX-512 signal analog $0-10 \mathrm{~V}$ monostable keys
current consumption input $0-10 \mathrm{~V}$	1 mA
load capacity of the control output +10 V out	10 mA
thermal protection	$60^{\circ} \mathrm{C}$ - automatic launch of electronically controlled fan $90^{\circ} \mathrm{C}$ - output power decrease by 10% $100^{\circ} \mathrm{C}$ - automatic dimmer shutdown
noise emitted by the dimmer at a distance of 15 cm from the device	45dB (with $30-40 \%$ control)
weight	1.1 kg
dimensions	width: 105 mm height: $140,2 \mathrm{~mm}$ depth: 86 mm

DECLARATION OF CONFORMITY

PXM Marek Żupnik spółka komandytowa Podłęże 654, 32-003 Podłęże

we declare that our product:

Product name:

Product code:

MultiSystem Dimmer $4 \times 600 \mathrm{~W}$
PX155
meets the requirements of the following standards, as well as harmonised standards:

PN-EN IEC 63000:2019-01 EN IEC 63000:2018
PN-EN 62368-1:2015-03 EN 62368-1:2014
PN-EN 61000-4-2:2011 EN 61000-4-2:2009
PN-EN IEC 61000-6-1:2019-03
EN IEC 61000-6-1:2019
PN-EN 61000-6-3:2008
EN 61000-6-3:2007
and meets the essential requirements of the following directives:
2011/65/UE directive of the european parlament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment Text with EEA relevance.
2014/30/UE dIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 26 February 2014 on the harmonisation of the laws of the Member States relating to electromagnetic compatibility (recast) Text with EEA relevance.
2014/35/UE DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 26 February 2014 on the harmonisation of the laws of the Member States relating to the making available on the market of electrical equipment designed for use within certain voltage limits
 NIP 677-002-54-53

mgr inż. Marek Żupnik.

